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ABSTRACT

Large scale content distribution over the internet has been the focus of numerous studies

in recent years. In the traditional server-client model, the server may suffer from overload

when a popular file stored at the server is frequently requested. In order to reduce the cost at

servers and decrease the retrieval time for clients, distributed storage solutions that operate

by dividing the file into pieces and placing copies of the pieces (replication) or coded versions

of the pieces (coding) at multiple source nodes have been proposed.

Network coding has also been used in large content distribution. In this work, we consider

multicasting a file that can be broken into small pieces to multiple clients over a network with

network coding. The network contains a set of source nodes that can store either subsets or

coded version of the pieces of the file. We are interested in finding the optimal storage capacity

and flows over the edges for the subset case and the coded case, respectively, such that the

joint cost of transmission at edges and storage at sources is minimized. We provide succinct

formulations of the corresponding optimization problems by using information measures. By

the insight gained from the two formulations, a gap linear program which can compute the

cost gap between the subset case and the coded case is formulated. A greedy algorithm is

developed to find a suboptimal solution of the gap LP. In particular, we show that when there

are two source nodes, there is no loss in considering subset sources. Furthermore, in the case

of three source nodes, we derive a tight upper bound on the cost gap between the two cases.

Algorithms for determining the content of the source nodes are also provided.
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CHAPTER 1. INTRODUCTION

Large scale content distribution over the Internet is a topic of great interest and has been

the subject of numerous studies [1]. The dominant mode of content distribution is the client-

server model, where a given client requests a central server for the file, which then proceeds to

service the request. For example, this is how a website server operates traditionally. A single

server, however is likely to be overwhelmed when a large number of users request for a file at

the same time and the websites are often replicated by the use of mirrors [2]. One can also

consider the usage of coding for replicating the content, e.g., if one uses erasure codes such as

Reed-Solomon codes or fountain codes, then it turns out that obtaining a certain number of

coded packets from each of mirrors will suffice. Peer-to-peer networks have also been proposed

for content distribution in a distributed manner [3].

The technique of network coding has also been considered for content distribution in net-

works [1]. Network coding allows us to use the network resources more efficiently in the case

of multicast, where a single source node or a group of source nodes contain information that is

requested by a set of terminals. Under network coding based multicast, the problem of allocat-

ing resources such as rates and flows in the network can be solved in polynomial time. This is

in contrast to multicast under routing, which is known to be a computationally hard problem.

Moreover, one can arrive at distributed solutions to these problems in an easier manner under

network coding.

In this work, we consider the following problem. Suppose that there is a large file, that can

be broken into small pieces, that needs to be transmitted to a given set of clients over a network

using network coding. The network has a designated set of nodes (called source nodes) that

have storage space. Each unit of storage space and each unit of flow over a certain edge has
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Figure 1.1 An example of the subset sources case

a known linear cost. We want to determine the optimal storage capacities and flow patterns

over the network such that this can be done with minimum cost. Within this problem setting,

we distinguish two different cases: (i) Subset sources case: Each source node only contains a

subset of the pieces of the file. (ii) Coded sources case: Each source node can contain arbitrary

functions of the pieces of the file.

At first glance, it may seem that in the subset sources case, one would only want to store

independent data at each source node. However, this is not the case as illustrated in Figure

1.1. We consider a file represented as (a, b, c, d), where each of the four components has unit-

entropy, and a network where each edge has capacity 3. The cost of transmitting at rate x

over edge e is ce(x) = x, the cost of storage at the sources is 1 per unit storage. As shown in

the figure, the case of partial replication when the source nodes contain dependent information

has lower cost compared to the cases when the source nodes contain independent information

or identical information (full replication).

The case of subset sources, is interesting for multiple reasons. For example, it may be the

case that a given terminal is only interested in a part of the original file. In this case, if one

places coded pieces of the original file at the source nodes, then the terminal may need to

obtain a large number of coded pieces before it can recover the part that it is interested in. In

the extreme case, if coding is performed across all the pieces of the file, then the terminal will

need to recover all the sources before it can recover the part it is interested in. Note however,

that in this work we do not explicitly consider scenarios where a given terminal requires a part



www.manaraa.com

3

of the file. From a theoretical perspective as well, it is interesting to examine how much loss

one incurs by not allowing coding at the sources.

1.1 Minimum Cost Multicast with Multiple Sources Problem

Several schemes have been proposed for content distribution over networks as discussed

previously ([1][2]). In this section we briefly overview past work that is most closely related to

the problem that we are considering.

Network coding has also been used in the area of large scale content distribution for different

purposes. In the work [1], the authors proposed a content distribution scheme using network

coding in a dynamic environment where nodes cooperate. A random linear coding based

storage system (which is motivated by random network coding) was considered in [4] and

shown to be more efficient than uncoded random storage system. However, their notion of

efficiency is different than the total flow and storage cost considered in our work. The work

of [5], proposed linear programming formulations for minimum cost flow allocation network

coding based multicast. Lee et al. [6] constructed minimum cost subgraphs for the multicast of

two correlated sources. It also proposed the problem of optimizing the correlation structure of

sources and their placement. However, a solution was not presented there. Efficient algorithms

for jointly allocating flows and rates were proposed for the multicast of a large number of

correlated sources in [7]. The work of Jiang [8], considered a formulation that is similar to

ours. It shows that under network coding, the problem of minimizing the joint transmission

and storage cost can be formulated as a linear program. Furthermore, it considers a special

class of networks called generalized tree networks and shows that there is no difference in

the cost whether one considers subset sources or coded sources. In contrast, in this work we

consider general networks, i.e., we do not assume any special structure of the network.

The work of Bhattad et al. [9] proposed an optimization problem formulation for cost

minimization when some nodes are only allowed routing and forwarding instead of network

coding. Our work on subset sources can be considered as an instance of this problem, by

introducing a virtual super node and only allowing routing/forwarding on it. However, since
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we consider a specific instance of this general problem, our problem formulation is much simpler

than [9] and allows us to compare the cost of subset sources vs. coded sources. In addition, we

recover stronger results in the case when there are only two or three source nodes. Furthermore,

our solution approach is quite different and uses the concept of information measures.

1.2 Thesis Outline

In this work, we study the minimum joint cost for transmission and storage of multicast

problem with both subset sources and coded sources. We also investigate the cost lost of

transforming coded sources network to subset sources network. Our main contribution is

1) Formulation of the optimization problems by exploiting the properties of the information

measure ([10]). We provide a precise formulation of the different optimization problems by

leveraging the properties of the information measure (I-measure) introduced in [10]. This

allows to provide a succinct formulation of the cost gap between the two cases and allows

us to recover tight results in certain cases. This is contained in Chapter 2 and 3. 2) Cost

comparison between subset sources case and coded sources case. The usage of the properties

of information measure allows us to conclude that when there are two source nodes, there is no

loss in considering subset sources. Furthermore, in the case of three source nodes, we derive an

upper bound on the cost between the two cases that is shown to be tight. Finally, we propose

a greedy algorithm to determine the cost gap for a given instance, that has been found to be

tight in many cases. This is contained in Chapter 4.

Chapter 2 is the theoretical background of the set theory and information theory. We

introduce the concept of atom, and then establish the correspondence of the set theory and

information theory. Two important theorems related to the atom theory are given. We then

present another theorem which will be used frequently in the subsequent chapters. An example

is used to illustrate the theorem.

Chapter 3 gives two problem formulations of the subset case. The first one is useful in

computation and easy to understand, and the second one will provide the insight of the cost

analysis between the coded case and the subset case. The equivalence of the two formulations
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is proved. Given the solutions of the problem, we describe the algorithm to decide the source

contents. Finally, the code source case formulation is briefly introduced.

In chapter 4, another coded case formulation with atom structure for any arbitrary number

of sources is presented. Given the solution of the new coded case, we formulate a linear program

to compute the cost difference between the subset case and the coded case. A greedy algorithm

is proposed to find a near optimal solution. We finally derive closed form upper bounds for

three sources networks and two sources networks.

In chapter 5 provides some experiment results. A deterministic network is given to validate

our previous analysis. The results for some random generated networks are also presented,

from which we can see how frequently there will be a cost gap between the coded case and the

subset case.

In Chapter 6, our conclusion gives a final perspective on our work.
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CHAPTER 2. MEASURE THEORY AND INFORMATION THEORY

2.1 Basic Concepts in Measure Theory

Definition 1 The field Fn generated by sets X̃1, X̃2, · · · , X̃n is the collection of sets which

can be obtained by any sequence of usual set operations (union, intersection, complement, and

difference) on X̃1, X̃2, · · · , X̃n.

Definition 2 The atoms of Fn are sets of the form ∩n
i=1Yi, where Yi is either X̃i or X̃c

i , the

complement of X̃i.

There are 2n atoms and 22n
sets in Fn. All the atoms in Fn are disjoint, and each set in

Fn can be expressed uniquely as the union of a subset of the atoms of Fn. For example, in F2,

there are 4 atoms: X̃1 ∩ X̃2, X̃1 ∩ X̃c
2, X̃

c
1 ∩ X̃2 and X̃c

1 ∩ X̃c
2.

Definition 3 A real function µ defined on Fn is called a signed measure if it is set-additive,

i.e., for disjoint set A and B in Fn, µ(A ∪ B) = µ(A) + µ(B). For a signed measure µ, we

have µ(∅) = 0.

We use Fn to denote the field generated by X̃1, X̃2, · · · , X̃n. Define the universal set Ω to be

the union of the sets X̃1, X̃2, · · · , X̃n, i.e., Ω = ∪n
i=1X̃i. The set A0 = ∩n

i=1X̃
c
i whose measure

is µ(∩n
i=1X̃

c
i ) = µ(∅) = 0, is called the empty atom of Fn. Let A be the set of nonempty atoms

of Fn. Then |A| = 2n − 1. Because any set in Fn can be uniquely defined as the union of

some atoms, a signed measure µ on Fn is completely specified by the values of the µ on the

nonempty atoms of Fn.

Consider a field Fn generated by n sets X̃1, X̃2, · · · , X̃n. Let NS = {1, 2, · · · , n} and X̃V

denote ∪i∈V X̃i for any nonempty subset V of NS .
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Theorem 1 Define

B = {X̃V : V is a nonempty subset of NS}

Then a signed measure µ on Fn is completely specified by {µ(B), B ∈ B}, which can be any set

of real numbers.

Proof. The number of elements in B is equal to the number of nonempty subsets of NS , which

is 2n−1. Thus |A| = |B| = 2n−1. Let k = 2n−1. Let u be a column k-vector of µ(A), A ∈ A,

and h be a column k-vector of µ(B), B ∈ B. Since all the sets in B can be expressed uniquely

as the union of some nonempty atoms in A, by the set-additivity of µ, for each B ∈ B, µ(B)

can be expressed uniquely as the sum of some components of u. Thus h = Cnu, where Cn

is a unique k × k matrix. On the other hand, it can be shown that (see Appendix ) for each

A ∈ A, µ(A) can be expressed as a linear combination of µ(B), B ∈ B.

However, the existence of the said expression does not imply its uniqueness. Nevertheless,

we can write u = Dnh for some k×k matrix Dn. We then obtain u = (DnCn)h which implies

that Dn is the inverse of Cn as the equality holds regardless of the choice of µ. Since Cn is

unique, so is Dn. Therefore, there is a unique linear relationship between µ(A), A ∈ A and

µ(B), B ∈ B. ¤

Since Fn can be completely specified by µ(A), Fn can also be completely specified by µ(B).

2.2 One-to-one Correspondence between Shannon Information Measure

and Set Theory

For n random variables X1, X2, · · · , Xn, let X̃i be a set corresponding to Xi. Let XV =

(Xi, i ∈ V ), where V is some nonempty subset of Ns. Construct the signed measure µ∗(X̃V ) =

H(XV ), for all nonempty subset V of NS .

Theorem 2 µ∗ is the unique signed measure on Fn which is consistent with all Shannon’s

information measures.
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Proof. Consider

µ∗(X̃G ∩ X̃G′ − X̃G′′)

= µ∗(X̃G∪G′′) + µ∗(X̃G′∪G′′)− µ∗(X̃G∪G′∪G′′)− µ∗(X̃G′′)

= H(XG∪G′′) + H(XG′∪G′′)−H(XG∪G′∪G′′)−H(XG′′)

= I(XG;XG′ |XG′′)

(2.1)

When G′′ = ∅, the equation becomes µ∗(X̃G ∩ X̃G′) = I(XG; XG′).

When G = G′, the equation becomes µ∗(X̃G − X̃G′) = H(XG|XG′′).

When G = G′ and G′′ = 0, the equation becomes µ∗(X̃G) = H(XG).

Then µ∗ is the unique signed measure on Fn which is consistent with all Shannon’s infor-

mation measures. ¤

The measure is consistent with all the Shannon information. Specifically, in each of these

equations, the left hand side and right hand side correspond to each other via the following

substitution of symbols:

H/I ↔ µ∗

, ↔ ∪

; ↔ ∩

| ↔ −

(2.2)

Hence, µ∗(B)’s for B ∈ B can represent all joint entropies. Because there is a unique linear

relationship between µ∗(A) for A ∈ A and µ∗(B) for B ∈ B, we can use the nonnegativity of

the linear combination of µ∗(A) where A ∈ A, to represent all the information inequalities.

2.3 Main Theorem

Let NS = {1, 2, · · · , n} and consider n random variables X1, X2, · · · , Xn. Let X̃i be a set

corresponding to Xi and let X̃V = ∪i∈V X̃i. We denote the set of nonempty atoms of Fn by

A, where Fn is the field generated by the sets X̃1, X̃2, · · · , X̃n. Similarly, XV denotes the

collection of random variables (Xi, i ∈ V ), where V ⊆ NS . Construct the signed measure

µ∗(X̃V ) = H(XV ), for all nonempty subset V of NS .
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Theorem 3 (1) Suppose that there exist a set of 2n−1 nonnegative values, one corresponding

to each atom of Fn, i.e, α(A) ≥ 0, ∀A ∈ A. Then, we can define a set of independent random

variables, WA, A ∈ A and construct random variables Xj = (WA : A ∈ A, A ⊂ X̃j), such that

the measures of the nonempty atoms of the field generated by X̃1, X̃2, · · · , X̃n correspond to the

values of α, i.e., µ∗(A) = α(A), ∀A ∈ A.

(2) Conversely, let Zi, i ∈ {1, . . . ,m} be a collection of independent random variables. Suppose

that a set of random variables Xi, i = 1, . . . , n is such that Xi = ZVi, where Vi ⊆ {1, . . . , m}.
Then the set of atoms of the field generated by X̃1, X̃2, · · · , X̃n, have non-negative measures.

proof : (1) Independent random variables WA, A ∈ A, such that H(WA) = α(A) can be

constructed [10]. It only remains to check the consistency of the measures. For this, we have,

for all V ⊆ NS ,

H(XV ) =
∑

A∈A:A⊂X̃V

H(WA), (2.3)

using the independence of the WA’s. On the other hand we know that

H(XV ) = µ∗(X̃V ) =
∑

A∈A:A⊂X̃V

µ∗(A). (2.4)

Equating these two we have, for all V ⊆ NS ,

∑

A∈A:A⊂X̃V

H(WA) =
∑

A∈A:A⊂X̃V

µ∗(A) (2.5)

Now, one possible solution to this is that µ∗(A) = H(WA), ∀A ∈ A. By the uniqueness of µ∗

[10], we know that this is the only solution.

(2) We will prove all the measures are nonnegative by induction. Without loss of generality,

we can order X̃i’s in an arbitrary way, then we can analyze the measure

µ∗(X̃1 ∩ · · · ∩ X̃l ∩k:k∈K X̃c
k)

where K ⊆ NS \ {1, 2, · · · , l}.
When l = 1, the measure corresponds to conditional entropy, ∀K ⊆ NS \ {1}

µ∗(X̃1 ∩k:k∈K X̃c
k) = H(X1|XK) ≥ 0
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When l = 2, we have, ∀K ⊆ NS \ {1, 2}

µ∗(X̃1 ∩ X̃2 ∩k:k∈K X̃c
k) = I(X1; X2|XK)

= H(X1, XK) + H(X2, XK)−H(XK)−H(X1, X2, XK)

=
∑

i∈V1∩V2∩k:k∈KV c
k

H(Zi) ≥ 0

Assume for l = j, ∀K ⊆ NS \ {1, 2, · · · , j}, the following statement holds,

µ∗(X̃1 ∩ · · · ∩ X̃j ∩k:k∈K X̃c
k) =

∑

i∈V1∩···∩Vj∩k:k∈KV c
k

H(Zi) (2.6)

When l = j + 1, ∀K ⊆ NS \ {1, 2, · · · , j + 1}, we will have

µ∗(X̃1 ∩ · · · ∩ X̃j+1 ∩k:k∈K X̃c
k) = µ∗(X̃1 ∩ · · · ∩ X̃j ∩k:k∈K X̃c

k)

− µ∗(X̃1 ∩ · · · ∩ X̃j ∩ X̃c
j+1 ∩k:k∈K X̃c

k)

(a)
=

∑

i∈V1∩···∩Vj∩k:k∈KV c
k

H(Zi)

−
∑

i∈V1∩···∩Vj∩V c
j+1∩k:k∈KV c

k

H(Zi)

(b)
=

∑

i∈V1∩···∩Vj+1∩k:k∈KV c
k

H(Zi) ≥ 0

The equation (a) is due to the assumption (2.6). The equation (b) is due to the independence

of Zi’s, i ∈ {1, . . . , m}. Therefore, we have shown that j ≤ n, ∀K ⊆ NS \ {1, 2, · · · , j},

µ∗(X̃1∩ · · · ∩ X̃j ∩k:k∈K X̃c
k) =

∑

i∈V1∩···∩Vj∩k:k∈KV c
k

H(Zi) ≥ 0

In a similar manner it is easy to see that all atom are non-negative. ¤

We note in passing that it is well-known that atom measures can be negative for general

probability distributions [10].

2.3.1 An Example

We now give an example in which not all the sources are subsets of the universal independent

information set, then not all atoms are nonnegative.
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The collection of random variables are (Z1, Z2), where Z1 and Z2 are independent random

variables with

P (Zi = 0) = P (Zi = 1) = 0.5

i = 1, 2. Let

X1 = Z1, X2 = Z2, X3 = (Z1 + Z2)mod2

Then X1 and X2 are subsets of (Z1, Z2), but X3 is not a subset of (Z1, Z2).

Then we will see not all the atoms are non-negative.

µ∗(X̃1 ∩ X̃2 ∩ X̃3) = µ∗(X̃1 ∩ X̃2)− µ∗(X̃1 ∩ X̃2 ∩ X̃c
3)

= I(X1; X2)− I(X1;X2|X3) = −1



www.manaraa.com

12

CHAPTER 3. PROBLEM FORMULATION

In this section we consider the following problem. Suppose that there is a source (we will

refer to this as the “original source” for convenience) that can be split into arbitrarily small

pieces, e.g. a huge movie file of size 50Gb can be considered to be consisting of 50e09 bits,

that needs to be transmitted to all the terminals. Assume that we have the flexibility to

place portions of the file consisting of collections of these pieces at various source nodes. The

motivational example in Figure 1.1 is an instance of this. The portions need not necessarily be

subsets of the bits, they may be arbitrary functions of them. We want to decide the content

of the portions so that the joint cost of storing and transmitting them over the network is

minimized. We consider two different cases.

i) Subset Sources. In this case, each source node only contains a subset of the pieces of the

original source.

ii) Coded Sources. We allow the portions to be arbitrary functions of the pieces of the

original source.

Under both cases we will allow all nodes in the network to perform network coding. We

abstract this problem as follows. Given a directed acyclic graph G = (V,E, C) that represents

the network. V denotes the set of vertices, E denotes the set of edges, and Cij denotes the

capacity constraint for edge (i, j) ∈ E. There is a set of source nodes S ⊂ V (numbered

1, . . . , n) and terminal nodes T ⊂ V . Suppose that the original source can be represented as

the collection of equal entropy independent sources {OSj}Q
j=1, where Q is a sufficiently large

integer. This assumption is equivalent to assuming that a file can be split into arbitrarily

small pieces. Let Xi represent the source at the ith source node, e.g., this represents the subset

of {OSj}Q
j=1 that are available at the ith node. Suppose that each edge (i, j) incurs a linear
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cost fijzij for a flow of value zij over it, and each source incurs a linear cost diH(Xi) for the

information Xi stored.

3.1 Subset Constraints Source Network

In this case each source Xi, i = 1, . . . , n is constrained to be a subset of the pieces of

the original source. We leverage Theorem 3 from the previous section that tells us that in

this case that µ∗(A) ≥ 0 for all A ∈ A. In the discussion below, we will pose this problem

as one of recovering the measures of the 2n − 1 atoms. Note that this will in general result

in fractional values. We shall consider a large enough time-step, so that all flows and atom

measures can be treated as integers. Following this we will present an algorithm that forms a

source corresponding to each atom, called the atom source. The requirement that the original

source be arbitrarily divisible is needed here.

3.1.1 Basic Formulation

We construct an augmented graph G∗
1 = (V ∗

1 , E∗
1 , C∗

1 ) as follows (see Figure 3.1(a)). Append

a virtual super node s∗ and 2n−1 virtual nodes corresponding to the atom sources WA, ∀A ∈ A
and connect s∗ to each WA source node. The node for WA is connected to a source node i ∈ S

if A ⊂ X̃i. The capacity of the new (virtual) edges is set to infinity. The cost of the edge from

s∗ to the atom node for WA is
∑
{i∈S:A⊂X̃i} di. The cost of the edges between the atom nodes

and S is set to zero.

If each terminal can recover all the atom sources, WA,∀A ∈ A, then it can in turn recover

the original source. The information that needs to be stored at the source node i ∈ S, is equal

to the sum of flows from s∗ to WA,∀A ⊂ X̃i. Let x
(t)
ij , t ∈ T represent the flow variable over G∗

1

corresponding to the terminal t along edge (i, j) and let zij represent maxt∈T x
(t)
ij , ∀(i, j) ∈ E.

The corresponding optimization problem ia defined as ATOM-SUBSET-MIN-COST, and can

be expressed as,

minimize
∑

(i,j)∈E fijzij +
∑

A∈A(
∑
{i∈S:A⊂X̃i} di)µ∗(A)
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Figure 3.1 (a) The network structure for the first formulation. (b) The
network structure for the second formulation.

subject to 0 ≤ x
(t)
ij ≤ zij ≤ c∗ij,1, ∀(i, j) ∈ E∗

1 , t ∈ T

∑

{j|(i,j)∈E∗1}
x

(t)
ij −

∑

{j|(j,i)∈E∗1}
x

(t)
ji = σ

(t)
i , ∀i ∈ V ∗

1 , t ∈ T

x
(t)
s∗WA

= µ∗(A), ∀t ∈ T, A ∈ A (3.1)

µ∗(A) ≥ 0, ∀A ∈ A (3.2)

H(X1, X2 · · · , Xn) =
∑

A:A∈A
µ∗(A) (3.3)

where

σ
(t)
i =





H(X1, · · · , Xn) if i = s∗

−H(X1, · · · , Xn) if i = t

0 otherwise

This is basically the formulation of the minimum cost multicast problem [5] with a virtual

super-source of entropy H(X1, . . . , Xn), with the added constraint that the flow on the edge

from s∗ to node WA for each terminal, x
(t)
s∗WA

is at least µ∗(A). We also have a constraint that
∑

A∈A µ∗(A) = H(X1, X2, · · · , Xn), that in turns yields the constraint that x
(t)
s∗WA

= µ∗(A).
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Also, note that the measure of each atom, µ∗(A) is non-negative. This enforces the subset

constraints.

In general, the proposed LP formulation has a number of constraints that is exponential

in the number of source nodes, since there are 2n − 1 nonnegative atoms. However, when the

number of source nodes is small, this formulation can be solved using regular LP solvers. We

emphasize though, that the formulation of this problem in terms of the atoms of the distribution

of the sources provides us with a mechanism of reasoning about the case of subset constraints,

under network coding. We are unaware of previous work that proposes a formulation of this

problem.

In order to solve this problem, we can instead consider the equivalent optimization problem:

minimize

∑

(i,j)∈E

fijzij +
∑

A∈A
(

∑

{i∈S:A⊂X̃i}
di)µ∗(A) +

∑

A∈A

∑
t

λt
A(x(t)

s∗WA
− µ∗(A))

subject to 0 ≤ x
(t)
ij ≤ zij ≤ c∗ij,1,∀(i, j) ∈ E∗

1 , t ∈ T

∑

{j|(i,j)∈E∗1}
x

(t)
ij −

∑

{j|(j,i)∈E∗1}
x

(t)
ji = σ

(t)
i , ∀i ∈ V ∗

1 , t ∈ T

µ∗(A) ≥ 0, ∀A ∈ A (3.4)

H(X1, X2 · · · , Xn) =
∑

A∈A
µ∗(A) (3.5)

where

σ
(t)
i =





H(X1, X2, · · · , Xn) if i = s∗

−H(X1, X2, · · · , Xn) if i = t

0 otherwise

and λt
A is a dual variable which has λt

A ≥ 0, ∀t ∈ T,A ∈ A.

This problem can be decomposed as two separate problems

minimize
∑

(i,j)∈E

fij(zij) +
∑

A∈A

∑
t

λt
Ax

(t)
s∗WA
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subject to 0 ≤ x
(t)
ij ≤ zij ≤ c∗ij,1,∀(i, j) ∈ E∗

1 , t ∈ T

∑

{j|(i,j)∈E∗1}
x

(t)
ij −

∑

{j|(j,i)∈E∗1}
x

(t)
ji = σ

(t)
i , ∀i ∈ V ∗

1 , t ∈ T

and

minimize
∑

A∈A
(

∑

{i∈S:A⊂X̃i}
di −

∑
t

λt
A)µ∗(A)

subject to

µ∗(A) ≥ 0, ∀A ∈ A

H(X1, X2, · · · , Xn) =
∑

A∈A
µ∗(A)

The first minimization problem is a standard multicast problem. The second minimiza-

tion problem can be solved in closed form after we get a set of λt
A: We assign µ∗(A) =

H(X1, X2, · · · , Xn), such that µ∗(A) corresponds to the smallest
∑
{i∈S:A⊂X̃i} di−

∑
t λt

A,∀A ∈
A. Other µ∗(A) are assigned to be zero. We use subgradient optimization to recover the dual

variables. However, the subgradient optimization does not necessarily yield a primal optimal

solution. There are many methods for recovering primal solutions, among them, we use the

method introduced by Sherali and Choi [11].

We now give a brief description of the primal recovery procedure of [11]. Let βj [k] for

j = 1, · · · , k be a set of convex combination weights for each k ≥ 1, i.e.,
∑k

j=1 βj [k] = 1, and

βj [k] ≥ 0, where k denotes the kth iteration. We define γj [k] = βj [k]/θ[k], for 1 ≤ j ≤ k, and

k ≥ 1, and let

∆γmax[k] = max{γj [k]− γ(j−1)[k] : j = 2, · · · , k}.

Let the primal solution returned by subgradient optimization at iteration k be denoted by the

vector (z, x, µ∗)[k] and let the kth primal iterate be defined as

(z̃, x̃, µ̃∗)[k] =
k∑

j=1

βj [k](z, x, µ∗)[j], for k ≥ 1.

Suppose that the sequence of weights βj [k] for k ≥ 1 and the sequence of step size θ[k], k ≥ 1

are chosen such that
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(1) γj [k] ≥ γj−1[k] for all j = 2, · · · , k for each k.

(2) ∆γmax[k] → 0, as k →∞, and

(3) γ1[k] → 0 as k →∞ and γk[k] ≤ δ for all k, for all δ > 0.

Then an optimal solution to the primal problem can be obtained from any accumulation point

of the sequence of primal iterates (z̃, x̃, µ̃∗).

Some useful choices for the step sizes θ[k] and the convex combination weights βj [k] that

satisfy these conditions are given below.

(1) θ[k] = a/(b + ck), for k ≥ 1 where a > 0, b ≥ 0, and c ≥ 0 and βj [k] = 1/k for all

j = 1, · · · , k.

(2) θ[k] = k−α, for k ≥ 1 where 0 < α < 1 and βj [k] = 1/k for all j = 1, · · · , k.

We can run the simulations for the two decomposed problems separately, keep records of

(z, x, µ∗)[k] and compute (z̃, x̃, µ̃∗)[k] until it converges.

In order to provide bounds on the gap between the optimal costs of the subset sources case

and the coded sources case, we now present an alternate formulation of this optimization, that

is more amenable to the gap analysis. Note however, that this alternate formulation has more

constraints than the one presented above.

3.1.2 Another Formulation

In the first formulation, the terminals first recover the atom sources, and then the original

source. In this alternate formulation, we pose the problem as one of first recovering all the

sources, Xi, i ∈ S at each terminal and then the original source. Note that since these sources

are correlated, this formulation is equivalent to the Slepian-Wolf problem over a network [7].

We will first give the problem formulation and then prove the two formulations have the same

optimums.

We construct another augmented graph G∗
2 = (V ∗

2 , E∗
2 , C∗

2 ) using the basic network graph

G = (V, E,C). We append a virtual super node s∗ to G, and connect s∗ and each source node
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i with virtual edges, such that its capacity is infinity and its cost is di. The structure of the

network is shown in Figure 3.1(b).

As before, let x
(t)
ij , t ∈ T represent the flow variable over G∗

2 corresponding to the ter-

minal t along edge (i, j) and let zij represent maxt∈T x
(t)
ij , ∀(i, j) ∈ E. We introduce vari-

able R
(t)
i , t ∈ T that represents the rate from source i to terminal t, i = 1, · · · , n. Thus

R(t) = (R(t)
1 , R

(t)
2 , · · · , R

(t)
n ) represents the rate vector for terminal t. In order for terminal t

to recover the sources, the rate vector R(t) needs to lie within the Slepian-Wolf region of the

sources, which is defined as follows.

RSW = {(R1, · · · , Rn) : ∀U ⊆ S,
∑

i∈U

Ri ≥ H(XU |XS\U )}

Moreover, the rates also need to be in the capacity region such that the network has enough

capacity to support them for each terminal. As before we have µ∗(A) ≥ 0, ∀A ∈ A to enforce

the subset constraint. The optimization problem is defined as SUBSET-MIN-COST. The

formulation is as follows.

minimize
∑

(i,j)∈E fijzij +
∑

A∈A(
∑
{i∈S:A⊂X̃i} di)µ∗(A)

subject to

0 ≤ x
(t)
ij ≤ zij ≤ c∗ij,2, (i, j) ∈ E∗

2 , t ∈ T (3.6)

∑

{j|(i,j)∈E∗2}
x

(t)
ij −

∑

{j|(j,i)∈E∗2}
x

(t)
ji = σ

(t)
i , i ∈ V ∗

2 , t ∈ T

x
(t)
s∗i ≥ R

(t)
i ,∀i ∈ S, t ∈ T (3.7)

R(t) ∈ RSW ,∀t ∈ T (3.8)

µ∗(A) ≥ 0, ∀A ∈ A (3.9)

zs∗i = H(Xi),∀i ∈ S (3.10)

H(X1, X2, · · · , Xn) =
∑

A∈A
µ∗(A) (3.11)

where

σ
(t)
i =





H(X1, X2, · · · , Xn) if i = s∗

−H(X1, X2, · · · , Xn) if i = t

0 otherwise
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Though not expressed explicitly, each conditional entropy term H(XU |XS\U ) needs to be equal
∑

A:A*X̃S\U
µ∗(A), and each marginal entropy H(Xi) needs to be equal

∑
A:A⊂X̃i

µ∗(A), so that

the atom measures and the entropies are consistent.

Now we prove the two formulations will get the same optimal values. The basic idea is as

follows. Note that the objective function for both the formulations is exactly the same. We

will first consider the optimal solution for the first formulation and construct a solution for

the second formulation so that we can conclude that fopt1 ≥ fopt2. In a similar manner we will

obtain the reverse inequality, which will establish equality of the two optimal values.

Suppose that we are given the optimal set of flows x
(t)
ij,1, zij,1, t ∈ T, (i, j) ∈ E∗

1 and the

optimal atom values µ∗(A)1 for the first formulation. Further assume that the optimal objective

function is fopt1.

Claim 1 In G∗
2, for the flows x

(t)
ij,2, zij,2, and the atoms µ∗(A)2, assign

x
(t)
ij,2 = x

(t)
ij,1, zij,2 = zij,1, ∀(i, j) ∈ G

x
(t)
s∗i,2 =

∑

A:A⊂X̃i

x
(t)
WAi,1, zs∗i,2 =

∑

A:A⊂X̃i

µ∗(A)1, ∀i ∈ S

µ∗(A)2 = µ∗(A)1, ∀A ∈ A.

Then x
(t)
ij,2, zij,2, and the atoms µ∗(A)2 are a feasible solution for the second formulation.

Proof. The flows balance for the source node in the first formulation
∑

A:A⊂X̃i
x

(t)
WAi,1 =

∑
j:(i,j)∈E∗1

x
(t)
ij,1, the flow balance for the source node in the second formulation: x

(t)
s∗i,2 =

∑
A:A⊂X̃i

x
(t)
WAi,1 =

∑
j:(i,j)∈E1

x
(t)
ij,1 =

∑
j:(i,j)∈E∗2

x
(t)
ij,2, ∀i ∈ S, the flow balance at the source

node is satisfied. We only need to check constraints (3.7) and (3.8).
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For any U ⊆ S, we will have
∑

i:i∈U

x
(t)
s∗i,2 =

∑

i:i∈U

∑

A:A⊂X̃i

x
(t)
WAi,1

=
∑

A:A*X̃S\U ,A⊂X̃U

x
(t)
WAi,1 +

∑

A:A⊆X̃S\U ,A⊂X̃U

x
(t)
WAi,1

≥
∑

A:A*X̃S\U ,A⊂X̃U

x
(t)
WAi,1

=
∑

A:A*X̃S\U ,A⊂X̃U

x
(t)
s∗WA,1

(a)
=

∑

A:A*X̃S\U ,A⊂X̃U

µ∗(A)1

=
∑

A:A*X̃S\U ,A⊂X̃U

µ∗(A)2

= H(XU |XS\U )

where H(XU |XS\U ) is the conditional entropy of the second formulation. (a) comes from the

constraint (3.1) in formulation 1. Therefore, constraints (3.7) and (3.8) are satisfied and this

assignment is feasible for the second formulation with a cost equal to fopt1. ¤

We conclude that the optimal solution for the second formulation fopt2 will have fopt2 ≤ fopt1.

Next we show the inequality in the reverse direction. Suppose that we are given the optimal

set of flows x
(t)
ij,2, zij,2, t ∈ T, (i, j) ∈ E∗

2 and the atom values µ∗(A)2 in the second formulation,

with an objective of value fopt2.

Claim 2 In G∗
1, assign

x
(t)
ij,1 = x

(t)
ij,2, zij,1 = zij,2, ∀(i, j) ∈ G

zs∗WA,1 = x
(t)
s∗WA,1 = µ∗(A)1 = µ∗(A)2, ∀A ∈ A

Furthermore, there exist flow variables x
(t)
WAi,1 and zWAi,1 over the edge (WA, i) ∈ V ∗

1 , ∀A ∈
A, such that together with the assignment above, they form a feasible solution for the first

formulation.

Proof. It is clear that the assignments for x
(t)
ij,1 and zij,1 for (i, j) ∈ G satisfy the required

constraints. We essentially need to demonstrate the existence of flow variables x
(t)
WAi,1 and
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Figure 3.2 The auxiliary graph for three sources case

zWAi,1 over the edge (WA, i) ∈ V ∗
1 , ∀A ∈ A, such that they satisfy the flow balance constraints

at all the concerned nodes.

Towards this end it is convenient to construct an auxiliary graph as follows. There is a

source node P ∗ connected to the atoms WA’s, A ∈ A, a terminal Q∗ connected to the sources

nodes, i ∈ S. There is an edge connecting WA and i if A ⊂ X̃i. An example is shown in Figure

3.2 in the case of three source nodes. The capacities on the edges are assigned as follows. The

capacity for edge (P ∗,WA) is x
(t)
s∗WA,1, the capacity for edge (i, Q∗) is x

(t)
s∗i,2, and the capacity

for edge (WA, i) is infinity. Note that
∑

A∈A x
(t)
s∗WA,1 =

∑
i∈S x

(t)
s∗i,2 = H(X1, X2, · · · , Xn).

Therefore, if we can show that the maximum flow in this auxiliary graph between P ∗ and Q∗

is H(X1, X2, · · · , Xn), this would imply the existence of flow variables on the edges between

the atom nodes and the source nodes that satisfy the required flow balance conditions.

To show this we use the max-flow min-cut theorem and instead show that the minimum

value over all cuts separating P ∗ and Q∗ is H(X1, X2, · · · , Xn).

First, notice that there is a cut with value H(X1, X2, · · · , Xn). This cut can be simply the

node P ∗, since the sum of the capacities of its outgoing edges is H(X1, X2, · · · , Xn). Next, if

an atom node WA, A ∈ A belongs to the cut that contains P ∗, then we must have all source

nodes i ∈ S such that A ⊂ X̃i also belonging to the cut. To see this, note that otherwise there

is at least one edge belonging to the cut whose capacity is infinity, i.e., the cut cannot be the
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minimum cut.

Let S′ ⊆ S. Based on this argument it suffices to consider cuts that contain, P ∗, the set of

nodes S \ S′ and the set of all atoms WA such that A * X̃S′ . The value of this cut is at least

∑

A:A⊂X̃S′

x
(t)
s∗WA,1 +

∑

i∈S\S′
x

(t)
s∗i,2 = H(X1, X2, · · · , Xn)−

∑

A:A*X̃S′

x
(t)
s∗WA,1 +

∑

i∈S\S′
x

(t)
s∗i,2

By constraints (3.7), (3.8) from the second formulation and the given assignment, we have
∑

A:A*X̃S′
x

(t)
s∗WA,1 ≤

∑
i∈S\S′ x

(t)
s∗i,2. This implies that the value of any cut of this form at

least H(X1, X2, · · · , Xn). Therefore we can conclude that the minimum cut over all cuts

separating P ∗ and Q∗ is exactly H(X1, X2, · · · , Xn). Because we have
∑

A∈A x
(t)
s∗WA,1 =

H(X1, X2 . . . , Xn), the flows on edge (P ∗,WA) should be equal to the capacity, our assign-

ment is a valid solution. ¤

From the second formulation, we can find a corresponding first formulation with equal cost

fopt2, then fopt1 ≤ fopt2. Hence, fopt1 = fopt2.

As we claimed earlier, the second formulation will be useful when we compare the cost gap

between coded case and subset case, we will use this augmented graph G∗ = G∗
2 in the rest of

the paper.

3.1.3 Solution Explanation and Construction

Assume that we solve the above problem and obtain the values of all the atoms µ∗(A), A ∈
A. These will in general be fractional. We now outline the algorithm that decides the content

of each source node. We use the assumption that the original source can be represented as

a collection of independent equal-entropy random variables {OSi}Q
i=1, for large enough Q at

this point. Suppose that H(OS1) = β. In turn, we can conclude that there exist integers

αA, ∀A ∈ A, such that αA×β = µ∗(A), ∀A ∈ A and that
∑

A∈A αA = Q. Consider an ordering

of the atoms, denoted as A1, A2, · · · , A2n−1. The atom sources can then be assigned as follows:

For each Ai, assign WAi = (OS∑
j<i αAj

+1, OS∑
j<i αAj

+2, . . . , OS∑
j≤i αAj

). It is clear that the

resultant atom sources are independent and that H(WA) = µ∗(A), ∀A ∈ A. We then assign

Xi = (WA : A ⊂ X̃i).
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The assumption on the original source is essentially equivalent to saying that a large file

can be broken into arbitrarily small pieces. To see this assume that each edge in the network

has a capacity of 1000 bits/sec. At this time-scale, suppose that we treat each edge as unit-

capacity, then a source of entropy one bit, can be considered to be a source of entropy 10−3 at

this time-scale. Therefore, if a given file can be broken into arbitrarily small pieces, then one

can decompose it into pieces of arbitrarily small entropy.

3.2 Coded Source Network

Given the same network, if we allow coded information stored at the sources, using the

augmented graph G∗ by the second problem formulation, the storage at the sources can be

viewed as the transmission along the edges connecting the virtual source and real sources.

Then the problem becomes the standard minimum cost multicast with network coding problem

(CODED-MIN-COST) where the variables are only the flows zij and x
(t)
ij .

minimize
∑

(i,j)∈E fijzij +
∑

i∈S dizs∗i

subject to 0 ≤ x
(t)
ij ≤ zij ≤ c∗ij , (i, j) ∈ E∗, t ∈ T

∑

{j|(i,j)∈E∗}
x

(t)
ij −

∑

{j|(j,i)∈E∗}
x

(t)
ji = σ

(t)
i , i ∈ V ∗, t ∈ T

where

σ
(t)
i =





H(X1, X2, · · · , Xn) if i = s∗

−H(X1, X2, · · · , Xn) if i = t

0 otherwise

Assume we have the solution for CODED-MIN-COST, we can use the random coding scheme

or the deterministic coding scheme introduced by [12][13] to reconstruct the sources and infor-

mation flow of each edge. We can also use the algorithm in [14] to find the suboptimal value

with integral values on the edges.
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CHAPTER 4. COST COMPARISON BETWEEN CODED CASE AND

SUBSET CASE

For given instances of the problem, we can certainly compute the cost gap by solving

the corresponding optimization problems SUBSET-MIN-COST and CODED-MIN-COST pre-

sented in the previous section. Because the subset case is a special case of the coded case, we

define the cost gap as the difference between the optimums of the subset case and the coded

case. In this section, we first formulate an optimization problem similar to SUBSET-MIN-

COST. The main difference is that we consider the source node can contain any arbitrary

functions of the pieces of the original source. Accordingly, we require the atoms to satisfy the

information inequalities [10] that consist of Shannon type inequalities and non-Shannon type

inequalities when n ≥ 4 [15]. In reference [16], it was shown that there are infinitely many

non-Shannon type inequalities. Hence, it is impossible to list all the information inequalities

when the source number exceeds 4. However, if we remove the non-Shannon type inequalities

from the constraints, the optimal value of coded case will not increase. In turn, this means

that the gap computed by comparing these optimal values will still be a valid upper bound for

the gap between the subset case and coded case.

Following this we can find an upper bound on the cost gap as the solution to another

optimization problem. In the general case, of n sources, even this optimization has constraints

that are exponential in n. However, this formulation still has advantages. In particular, we

are able to provide a greedy algorithm for find near-optimal solutions for it. Moreover, we are

able to prove that this greedy algorithm allows us to determine an upper bound in the case

of three sources, which can be shown to be tight, i.e., there exist instances such that the cost

gap is met with equality.
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4.1 General Case

We now present the problem formulation for ATOM-CODED-MIN-COST. As done previ-

ously, we augment the graph G with a virtual super source s∗ and introduce infinite capacity

edges from s∗ to each i ∈ S.

minimize
∑

(i,j)∈E fijzij +
∑

i∈S dizs∗i

subject to 0 ≤ x
(t)
ij ≤ zij ≤ c∗ij , ∀(i, j) ∈ E∗, t ∈ T

∑

{j|(i,j)∈E∗}
x

(t)
ij −

∑

{j|(j,i)∈E∗}
x

(t)
ji = σ

(t)
i , ∀i ∈ V ∗, t ∈ T (4.1)

x
(t)
s∗i ≥ R

(t)
i ,∀i ∈ S, t ∈ T (4.2)

R(t) ∈ RSW ,∀t ∈ T (4.3)

H(Xi|XS\{i}) ≥ 0, ∀i ∈ S (4.4)

I(Xi;Xj |XK) ≥ 0, ∀i ∈ S, j ∈ S, i 6= j, K ⊆ S \ {i, j} (4.5)

zs∗i = H(Xi),∀i ∈ S (4.6)

H(X1, X2 · · · , Xn) =
∑

A∈A
µ∗(A) (4.7)

where

σ
(t)
i =





H(X1, X2, · · · , Xn) if i = s∗

−H(X1, X2, · · · , Xn) if i = t

0 otherwise

The formulation is the same as SUBSET-MIN-COST except that we remove (3.9), and add

constraints (4.4) and (4.5) that are elemental inequalities, which guarantee that all Shannon

type inequalities are satisfied [10]. The elemental inequalities can be represented in the form

of atoms:

H(Xi|XS\{i}) = µ∗(A), A * X̃S\{i}

I(Xi; Xj |XK) =
∑

A∈A:A⊂X̃i,A⊂X̃j ,A*X̃K

µ∗(A)

where K ⊆ S \ {i, j}.
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Now, suppose that we know the optimal value of the above optimization problem, i.e.,

the flows x
(t)
ij,1, z

(t)
ij,1, t ∈ T, (i, j) ∈ E∗, the measure of the atoms µ∗(A)1, ∀A ∈ A, and the

corresponding conditional entropies H1(XU |XS\U ), ∀U ⊆ S. If we can construct a feasible so-

lution for SUBSET-MIN-COST such that the flows over E∗ are the same as x
(t)
ij,1(and z

(t)
ij,1), t ∈

T, (i, j) ∈ E, then we can arrive at an upper bound for the gap. This is done below. Let

µ∗(A), ∀A ∈ A denote the variables for the atom measures for the subset case. We have a gap

LP,

min
∑

A∈A
(

∑

{i∈S:A⊂X̃i}
di)µ∗(A)−

∑

A∈A
(

∑

{i∈S:A⊂X̃i}
di)µ∗(A)1

subject to
∑

A:A*X̃S\U

µ∗(A) ≤ H1(XU |XS\U ), ∀U ⊂ S (4.8)

µ∗(A) ≥ 0, ∀A ∈ A
∑

A:A∈A
µ∗(A) = H(X1, X2, · · · , Xn)

where H1(XU |XS\U ) =
∑

A:A*X̃S\U
µ∗(A)1, ∀U ⊂ S. In the SUBSET-MIN-COST, we assign

x
(t)
ij = x

(t)
ij,1, (i, j) ∈ E∗, z

(t)
ij = z

(t)
ij,1, (i, j) ∈ E and zs∗i =

∑
A:A⊂X̃i

µ∗(A), ∀i ∈ S. To see that

this is feasible, note that

zs∗i =
∑

A:A⊂X̃i

µ∗(A) = H(Xi)

= H(X1, X2, · · · , Xn)−H(X1, · · · , Xi−1, Xi+1, · · · , Xn|Xi)

(a)

≥ H(X1, X2, · · · , Xn)−H1(X1, · · · , Xi−1, Xi+1, · · · , Xn|Xi)

= H1(Xi)

= zs∗i,1

≥ x
(t)
s∗i,1

= x
(t)
s∗i

Then constraint (3.6) is satisfied.

∑

i:i∈U

x
(t)
s∗i =

∑

i:i∈U

x
(t)
s∗i,1 ≥ H1(XU |XS\U )

(b)

≥ H(XU |XS\U )
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where H(XU |XS\U ) =
∑

A:A*X̃S\U
µ∗(A), ∀U ⊂ S. Then constraints (3.7) and (3.8) are satis-

fied.

Both (a) and (b) come from constraint (4.8). The difference in the costs is only due to the

different storage costs, since the flow costs are exactly the same.

The Lagrangian for GAP problem is

L(µ, λ,ν, α) =
∑

A∈A
(

∑

{i∈S:A⊂X̃i}
di)µ∗(A)−

∑

A∈A

∑

{i∈S:A⊂X̃i}
diµ

∗(A)1

+
∑

U⊂S

λU (
∑

A:A*X̃S\U

µ∗(A)−H1(XU |XS\U ))

−
∑

A∈A
νAµ∗(A)

+ α(
∑

A:A∈A
µ∗(A)−H(X1, ..., Xn))

The KKT condition is, for the optimal solution (µ∗(A), λ, ν, α):

for Aj ∈ A, if there exists i, such that Aj * X̃i, then µ∗(Aj) should satisfy

∂L(µ, λ, ν, α)
∂µ∗(Aj)

=
∑

{i∈S:Aj⊂X̃i}
di +

∑

U :Aj⊂X̃U ,U⊂S

λU − νAj + α,

for Aj ∈ A, if for all i, Aj ⊂ X̃i, then µ∗(Aj) should satisfy

∂L(µ, λ, ν, α)
∂µ∗(Aj)

=
∑

{i∈S:Aj⊂X̃i}
di − νAj + α,
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and

λU ≥ 0,∀U ⊂ S

νA ≥ 0,∀A ∈ A

λU (
∑

A:A*X̃S\U

µ∗(A)−H1(XU |XS\U )) = 0, ∀U ⊂ S

νAµ∗(A) = 0, ∀A ∈ A
∑

A:A*X̃S\U

µ∗(A)−H1(XU |XS\U ) ≤ 0, ∀U ⊂ S

µ∗(A) ≥ 0, ∀A ∈ A
∑

A:A∈A
µ∗(A) = H(X1, ..., Xn)

4.1.1 Greedy Algorithm

We present a greedy algorithm for the gap LP that returns a feasible, near-optimal solution,

and hence serves as an upper bound to the gap. The main idea is to start by saturating atom

values with the low costs, while still remaining feasible, e.g., suppose that source 1, has the

smallest cost. Then, the atom X̃1 ∩k∈NS\{1} X̃c
k has the least cost among all the atoms, and

therefore we assign it the maximum value possible, i.e., H1(X1|XS\{1}). Further assignments

are made similarly in a greedy fashion. More precisely we follow the steps given below.

1. Initialize µ∗(A) = 0, ∀A ∈ A. Label all atoms as “unassigned”.

2. If all atoms have been assigned, STOP. Otherwise, let Amin denote the atom with mini-

mum cost that is still unassigned.

• Set µ∗(Amin) ≥ 0 as large as possible so that the sum of the values of all assigned

atoms does not violate any constraint in (4.8).

• Check to see whether
∑

A∈A µ∗(A) > H(X1, X2, · · · , Xn). If YES, then reduce the

value of µ∗(Amin), so that
∑

A∈A µ∗(A) = H(X1, X2, · · · , Xn) and STOP. If NO,

then label Amin as “assigned”.
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3. Go to step 2.

It is clear that the this algorithm returns a feasible set of atom values, since we maintain

feasibility at all times and enforce the sum of the atom values to be H(X1, X2, · · · , Xn).

The greedy algorithm, though suboptimal, does give the exact gap in many cases that we

tested. Moreover, as discussed next, the greedy approach allows us to arrive at a closed form

expression for the an upper bound on the gap in the case of three sources.

4.2 Three Sources Case

The case of three sources is special because, (i) Shannon type inequalities suffice to describe

the entropic region, i.e., non-Shannon type inequalities do not exist for three random variables.

This implies that we can find three random variables using the atom measures solution of

ATOM-CODED-MIN-COST. (ii) Moreover, there is at most one atom, µ∗(X̃1 ∩ X̃2 ∩ X̃3) that

can be negative. This makes the analysis easier since the greedy algorithm proposed above can

be applied to obtain the required bound. Let the atoms be denoted by the variables shown in

Figure 4.1.

1A

2A
3A

4A
5A

6A

B

Figure 4.1 Atom pattern when there are three sources

Claim 3 Consider random variables X1, X2 and X3 with H(X1, X2, X3) = h. Then, µ∗(B) ≥
−h

2 .
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Proof. Let b = µ∗(B), and ai = µ∗(Ai), i = 1, · · · , 6. The elemental information inequalities

are given by

ai ≥ 0, i = 1, · · · , 6

ai + b ≥ 0, i = 4, 5, 6.

We also have joint entropy equality

(
∑

i=1,··· ,6
ai) + b = h.

Assume that b < −h
2 . Then,

ai + b ≥ 0 ⇒ ai ≥ −b >
h

2
, i = 4, 5, 6 ⇒ a4 + a5 > h.

Next,

h = a1 + a2 + a3 + a4 + a5 + a6 + b ≥ a1 + a2 + a3 + a4 + a5 > a1 + a2 + a3 + h.

This implies that a1 + a2 + a3 < 0, which is a contradiction, since ai ≥ 0, i = 1, · · · , 6. ¤

Using this we can obtain the following lemma

Lemma 1 Supose that we have three source nodes. Let the joint entropy of the original source

be h and let fopt2 represent the optimal value of SUBSET-MIN-COST and fopt1, the optimal

value of CODED-MIN-COST. Then, fopt2 − fopt1 ≤ (mini∈S(di))h/2.

Proof. Without loss of generality, assume that mini∈S(di) = d1. Suppose that in the optimal

solution for ATOM-CODED-MIN-COST, µ∗(B) = b1 ≤ 0. As in the greedy algorithm above,

we construct a feasible solution for SUBSET-MIN-COST by keeping the flow values the same,

but changing the atom values suitably. Let a2
i , i = 1, . . . , 6, b2 denote the atom values for the

subset case. Consider the following assignment,

a2
i = a1

i , i = 1, . . . , 5

a2
6 = a1

6 − |b1|, and

b2 = 0.
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H1(Xi) denotes the entropy solution of ATOM-CODED-MIN-COST for source i, i ∈ S.

H2(Xi) denotes the entropy solution of SUBSET-MIN-COST for source i. Assume b1 is nega-

tive, the other atoms values are a1
i , i = 1, · · · , 6. We have the solution x

(t)
ij,1,∀t ∈ T, (i, j) ∈ E∗

and H1(Xi), i = 1, 2, 3. Now set H2(X1) = H1(X1) + |b1|, H2(X2) = H1(X2), H2(X3) =

H1(X3). This can be realized by letting a2
i = a1

i , i = 1, 2, 3, 4, 5; b2 = b1+|b1| = 0; a2
6 = a1

6−|b1|.
Then a2

i ≥ 0, i = 1, · · · , 6, b2 ≥ 0, H2(X1, X2, X3) = H1(X1, X2, X3), we can find a subset

source distribution. This is shown pictorially in Figure 4.2.

1
1a

1
2a 1

3a

1
4a 1

5a

1
6a

1b

1
1a

1
2a 1

3a

1
4a 1

5a

1 1
6 | |a b−

0

Coded case
Correspongding subset case

X1

X2 X3

X1

X2
X3

Figure 4.2 The transforming scheme from coded case to subset case, b1 is
negative

We can check constraint (4.8) to see that the solution is feasible for the gap LP for three

sources. We can also check the constants (3.6), (3.7) and (3.8) in the SUBSET-MIN-COST to

see the feasibility

x
(t)
s∗1,1 ≥ R

(t)
1 ≥ H1(X1|X2, X3) = H2(X1|X2, X3)

x
(t)
s∗2,1 ≥ R

(t)
2 ≥ H1(X2|X1, X3) = H2(X2|X1, X3)

x
(t)
s∗3,1 ≥ R

(t)
3 ≥ H1(X3|X2, X1) = H2(X3|X2, X1)

x
(t)
s∗1,1 + x

(t)
s∗2,1 ≥ R

(t)
1 + R

(t)
2 ≥ H1(X1, X2|X3) = H2(X1, X2|X3)

x
(t)
s∗1,1 + x

(t)
s∗3,1 ≥ R

(t)
1 + R

(t)
3 ≥ H1(X1, X3|X2) = H2(X1, X3|X2)
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x
(t)
s∗2,1 + x

(t)
s∗3,1 ≥ R

(t)
2 + R

(t)
3 ≥ H1(X2, X3|X1) > H2(X2, X3|X1)

x
(t)
s∗1,1 + x

(t)
s∗2,1+x

(t)
s∗3,1 ≥ R

(t)
1 + R

(t)
2 + R

(t)
3 ≥ H1(X1, X2, X3) = H2(X1, X2, X3)

x
(t)
s∗1,1 ≤ zs∗1,1 = H1(X1) < H2(X1)

x
(t)
s∗2,1 ≤ zs∗2,1 = H1(X2) = H2(X2)

x
(t)
s∗3,1 ≤ zs∗3,1 = H1(X3) = H2(X3)

The transforming process is the standard procedure of greedy algorithm. We can also

check the KKT condition for gap LP to see the optimality. Assume the cost d1 ≤ d2 ≤ d3.

According to the KKT condition in the general case, let λ1 = λ2 = λ3 = d1, λ12 = d3−d1, λ13 =

d2−d1, λ23 = 0, ν123 = d1, α = −(d2+d3), and all other dual variables be 0, then this set of dual

variables and primal variables that we give above will satisfy all the KKT conditions. Hence,

we have a optimal solution. x
(t)
ij,1, (i, j) ∈ E∗ are feasible for the subset problem. The flows

do not change over transforming the coded case to the subset case. The only cost increased is

(d1)× (|b|) ≤ (mini∈S(di))h/2. ¤

In Chapter 5, we will show an instance of a network where this upper bound is tight.

Finally we note that when there are only two source nodes, there is no cost difference

between the subset case and the coded case, since for two random variables, all atom measures

have to be nonnegative. We state this as a lemma below.

Lemma 2 Supose that we have two source nodes. Let fopt2 represent the optimal value of

SUBSET-MIN-COST and fopt1, the optimal value of CODED-MIN-COST. Then, fopt2 = fopt1.



www.manaraa.com

33

CHAPTER 5. RESULTS

In this section we present an example of a network with three sources where our upper

bound derived in Chapter 4.2 is tight. We also performed several experiments with randomly

generated graphs. The primary motivation was to study whether the difference in cost between

the subset sources case and the coded case occurs very frequently. We finally present the results

for gap LP and greedy algorithm to see how accurately the gap can be computed.

5.1 Results on a Deterministic Network

2

4

9

1

3

7

6

8

5

S*

Figure 5.1 A deterministic network

Consider the network in Figure 5.1 with three sources nodes, 1, 2 and 3 and four terminal

nodes, 6, 7, 8, and 9. The entropy of the original source = H(X1, X2, X3) = 2 and all edges

are unit-capacity. The costs are such that fij = 1, ∀(i, j) ∈ E and d1 = d2 = 2, d3 = 1.

The optimal cost in the subset sources case is 17. The corresponding atom values are listed

in the Table 5.1. In this case we have H(X1) = 1.22,H(X2) = 1.36 and H(X3) = 1.42. We

can decide the source content using the construction steps we introduced.
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Table 5.1 Atom values when subset constraints are enforced

Atom Xc
1Xc

2Xc
3 X1Xc

2Xc
3 Xc

1X2Xc
3 X1X2Xc

3 Xc
1Xc

2X3 X1Xc
2X3 Xc

1X2X3 X1X2X3

µ∗() 0 0 0 0.5809 0 0.6367 0.7824 0

In the coded sources case, the optimal value is 16, with H(X1) = H(X2) = H(X3) = 1.

The distributions for the sources are: X1 and X2 are independent with a distribution P (Xi =

0) = P (Xi = 1) = 0.5, i = 1, 2. X3 = (X1 + X2)mod2. Coding exists among X1, X2 and X3.

Note that in this case the gap between the optimal values is precisely = h
2 × 1 = 2

2 × 1 = 1,

i.e., the upper bound derived in the previous section is met with equality.

5.2 Results on Random Networks

We generated several directed graphs at random with |V | = 87, |E| = 322. The linear

cost of each edge was fixed to an integer in {1, 2, 3, 4, 5, 6} or a large number such as 29

and 31. We ran 5000 experiments with fixed parameters (|S|, |T |, h), where |S| denotes the

number of source nodes, |T | denotes the number of terminal nodes and h denotes the entropy

of the original source. The locations of the source and terminal nodes were chosen randomly.

The capacity of each edge was chosen at random from the set {1, 2, 3, 4, 5}. There were no

capacity constraints on the source nodes. In many cases it turned out that the network did

not have enough capacity to support the recovery at the terminals. These instances were

discarded. Notice whenever there is coded case solution, we are able to find a corresponding

subset solution.

The results are shown in Table 5.2. The “Equal” row corresponds to the number of instances

when both the coded and subset case have the same cost, and “Non-equal” corresponds to the

number of instances where the coded case has a lower cost. Note that in most cases, the

subset case and the coded case have the exact same cost. We also evaluated the gap LP and

the greedy algorithm proposed in Section 4.1.1 to evaluate the cost gap. Note that the gap

LP is only an upper bound since it is derived assuming that the flow patterns do not change

between the coded and the subset case. When (|S|, |T |, h) = (4, 3, 4), we ran 5000 experiments,
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Table 5.2 Comparisons of two schemes in 5000 random directed graphs

(|S|, |T |, h) (3, 3, 3) (4, 4, 4) (5, 5, 5) (4, 5, 5) (5, 4, 5) (4, 4, 5)

Equal 3893 2855 1609 1577 2025 1954

Nonequal 1 3 10 9 6 8

among which 3269 instances could support both the coded and the subset case. Out of these,

there were 481 instances where the upper bound determined by the gap LP was not tight.

In addition, there were 33 instances where the greedy algorithm failed to solve the gap LP

exactly.
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CHAPTER 6. SUMMARY AND DISCUSSION

In this work, we considered network coding based content distribution, under the assump-

tion that the content can be considered as a collection of independent equal entropy sources.

e.g., a large file that can be broken into small pieces. Given a network with a specified set

of source nodes, we examined two cases. In the subset sources case, the source nodes are

constrained to only contain subsets of the pieces of the content, whereas in the coded sources

case, the source nodes can contain arbitrary functions of the pieces. The cost of a solution

is defined as the sum of the storage cost and the cost of the flows required to support the

multicast. We provided succinct formulations of the corresponding optimization problems by

using the properties of information measures. In particular, we showed that when there are

two source nodes, there is no loss in considering subset sources. For three source nodes, we

derived a tight upper bound on the cost gap between the two cases. A greedy algorithm for

estimating the cost gap for a given instance was provided. Finally, we also provided algorithms

for determining the content of the source nodes.

Our results indicate that when the number of source nodes is small, in many cases con-

straining the source nodes to only contain subsets of the content does not incur a loss.
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APPENDIX. A VARIATION OF THE INCLUSION-EXCLUSION

FORMULA

In this appendix, we show that for each A ∈ A, µ(A) can be expressed as a linear combina-

tion of µ(B), B ∈ B. We first prove the following variation of the inclusive-exclusive formula

Theorem 4 For a set-additive function µ,

µ(
n⋂

k=1

Ak −B) =
∑

1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B)

+ · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B).

(.1)
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Proof. The theorem will be proved by induction on n. First when n = 1, the equality holds.

Assume the equality holds for some n ≥ 1. Now consider

µ(
n+1⋂

k=1

Ak −B)

= µ((
n⋂

k=1

Ak) ∩An+1 −B)

= µ(
n⋂

k=1

Ak −B) + µ(An+1 −B)− µ((
n⋂

k=1

Ak) ∪An+1 −B)

= {
∑

1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B) + · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B)}

+ µ(An+1 −B)− µ(
n⋂

k=1

(Ak ∪An+1)−B)

= {
∑

1≤i≤n

µ(Ai −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj −B) + · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An −B)}

+ µ(An+1 −B)− {
∑

1≤i≤n

µ(Ai ∪An+1 −B)−
∑

1≤i<j≤n

µ(Ai ∪Aj ∪An+1 −B)

+ · · ·+ (−1)n+1µ(A1 ∪A2 ∪ · · · ∪An ∪An+1 −B)}

=
∑

1≤i≤n+1

µ(Ai −B)−
∑

1≤i<j≤n+1

µ(Ai ∪Aj −B) + · · ·+ (−1)n+2µ(A1 ∪A2 ∪ · · · ∪An+1 −B).

(.2)

The n + 1 case is also proved, then by induction, the theorem is proved.¤

Now a nonempty atom Fn has the form ∩n
i=1Yi, where Yi is either X̃i or X̃c

i and there exists

at least one i such that Yi = X̃i. Then we can write the atom as

⋂

i:Yi=X̃i

X̃i − (
⋃

j:Yj=X̃c
j

X̃j)

Note that the intersection above is always nonempty. Then we see that for each A ∈ A, µ(A)

can be expressed as a linear combination of µ(B), B ∈ B.
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